탐험 >   IBM PartnerWorld
 |  |  |  |  | 
번역
中文(简体)中文(漢字)EnglishFrançaisItaliano日本語한국어PortuguêsРусскийEspañol
에 의해 Transposh - translation plugin for wordpress

번역 위젯 여러 언어로이 블로그의 영어 버전의 번역을 촉진 하기 위하여 당신의 편의 위해 제공 됩니다.. 이 자동된 번역 기능을 활용 하려는 경우, 자동된 번역 원래 영어 버전 간의 편차가 있을 수 있습니다 이해 하시기 바랍니다. IBM 같은 자동된 번역 편차에 대 한 책임을 지지 않습니다 및 번역된 버전 제공 "그대로" 어떠한 종류의 보증 없이.

분석 수요를 생성 인프라 전세계

빅 데이터의 도전을 회의

빅 데이터의 도전을 회의

확장 구축, 고성능 데이터 클러스터는 빅 데이터 분석 서비스를 제공하는

Big data analytics projects inevitably begin with big hopes and grand plans. Getting started with Hadoop and Spark is straightforward. Pilot projects start with open source tools, sample data and a modest goal. Pilot success might be a single view of previously independent data that allows end-to-end reporting of a customer or a process. And then the fun begins. Real data. Regular reports. Scaling the cluster.

The weakest link and the easiest issue to address is storage. The default open source data storage, Hadoop Distributed File System (HDFS), was not designed for the enterprise. 예를 들어, the data organizations want to analyze is almost always from other sources. It may have client information that needs to be secured and access-controlled. Inevitably, other applications or users also want to use the same data as the big data cluster using industry-standard file or object interfaces.

The solution is to build a scalable, high-performance data cluster to serve big data analytics that also supports industry-standard protocols. With complete HDFS support and the scalable performance of the leading parallel file system, IBM 탄성 스토리지 서버 (ESS) 5.2 is the perfect building block for big data analytics storage. Built with IBM Spectrum Scale, the HDFS-transparent connector enables open source Hadoop and Spark frameworks to run without any modification. 사실, Hortonworks recently paper-certified IBM Spectrum Scale across its portfolio.

The real challenge for IBM Business Partners will be building the business case for ESS 5.2 and IBM Spectrum Scale with the three key stakeholders in a big data analytics project.

The data scientist on the core pilot team will resist any divergence from the open source choices because he or she fears the solution will not perform as the cluster scales. Proven on massive clusters, the IBM Spectrum Scale parallel file system removes the data bottlenecks common to other solutions. It can outperform HDFS on many benchmarks. 그러나, it is the elimination of the data ingest transformation and extraction time that will greatly speed the time to insight and convince data scientists to really look at IBM Spectrum Scale and ESS.

For the IT department that needs to support the environment, choosing ESS can lower both the CapEx and the OpEx of the solution. Because ESS uses advanced erasure encoding to distribute and protect data, ESS data storage requires only about 22 percent more physical storage than data. In contrast, HDFS uses three-way replication—300 percent of the data being analyzed. 또한, ESS is architected to survive multiple failures and secure data integrity. Redundant data paths and end-to-end checksums make most issues strictly a background task to repair, not an emergency. The ESS GUI provides a complete view of hardware and software, and integrates into IBM Spectrum Control for a portfolio view of storage and trends.

The business-line executive sponsoring the project will probably be aware of the security and governance of the data and the results that open source data storage does not provide. Compliance with privacy and regulations often requires the ability to audit a fraud, risk or compliance result with archives. These are trivial for IBM Spectrum Scale systems, which are supported by IBM Spectrum Protect and most major backup solutions.

그러나, it may be the vision of the organization’s big data future that an executive will find most compelling. IBM Spectrum Scale and the Hadoop Connector can federate multiple data sources into a single HDFS view. It can span geographies for global collaboration. 을 더한, it can automatically tier to tape, on-premises object storage or the cloud to truly archive and analyze in place.

IBM Spectrum Scale, especially the ESS 5.2 all-flash solution, is a perfect reason to discuss the roadmap for big data analytics with your clients. They may still be in the pilot stage, but you will be ready for them when they move from sandbox to production. 당신은 내가 당신의 의견은 아래의 기능을 사용하여 생각을 알려 주시기 바랍니다.

더그 오플래허티
매니저, IBM 스펙트럼 솔루션 마케팅

더글라스 오 플라 허티는 IBM 스펙트럼 솔루션 마케팅 팀을 이끌고, 이는 IBM 스펙트럼 스토리지 및 IBM 스펙트럼 컴퓨팅 포트폴리오를 포함. 그의 배경은 대기업과 벤처 기업 모두를 포함하고 그 이후 IBM과 함께하고있다 2015. 미스터. 오 플라 허티는 상용 응용 프로그램에서 HPC 및 빅 데이터에 대한 오랜 전도자입니다.

관련 기사

귀하의 의견 게시

귀하의 이메일 주소가 게시 되지 않습니다.. 필수 필드는 표시 *

이름 *

메일 주소 *

웹사이트